An Additive Version of Higher Chow Groups Une Version Additive Des Groupes De Chow Supérieurs
نویسنده
چکیده
The cosimplicial scheme ∆• = ∆ →∆1 → → → . . . ; ∆ n := Spec ( k[t0, . . . , tn]/( ∑ ti − t) ) was used in[3] to define higher Chow groups. In this note, we let t tend to 0 and replace ∆• by a degenerate version Q• = Q →Q1 → → → . . . ; Q n := Spec ( k[t0, . . . , tn]/( ∑ ti) ) to define an additive version of the higher Chow groups. For a field k, we show the Chow group of 0-cycles on Q in this theory is isomorphic to the group of absolute (n− 1)-Kähler forms Ωn−1 k . An analogous degeneration on the level of de Rham cohomology associated to “constant modulus” degenerations of varieties in various contexts is discussed. Résumé en français: Le schéma cosimplicial ∆• = ∆ →∆1 → → → . . . ; ∆ n := Spec ( k[t0, . . . , tn]/( ∑ ti − t) ) a été utilisé dans [3] afin de définir des groupes de Chow supérieurs. Dans cette note, nous définissons une version additive des groupes de Chow supérieurs en faisant tendre t vers 0 et en remplaçant ∆• par une version dégénérée Q• = Q →Q1 → → → . . . ; Q n := Spec ( k[t0, . . . , tn]/( ∑ ti) ) . Nous montrons que sur un corps k, le groupe de Chow des 0-cycles dans cette théorie est isomorphe aux formes de Kähler absolues de degré (n− 1). Nous discutons une dégénerescence analogue en cohomologie de de Rham apparaissant dans diverses situations pour des familles à module constant. Date: July 21, 2002. 1991 Mathematics Subject Classification. Primary 14C15, 14C35. 1 2 SPENCER BLOCH AND HÉLÈNE ESNAULT
منابع مشابه
On Additive Higher Chow Groups of Affine Schemes
We show that the multivariate additive higher Chow groups of a smooth affine k-scheme Spec (R) essentially of finite type over a perfect field k of characteristic 6= 2 form a differential graded module over the big de Rham-Witt complex WmΩ • R. In the univariate case, we show that additive higher Chow groups of Spec (R) form a Witt-complex over R. We use these structures to prove an étale desce...
متن کاملMoving Lemma for Additive Chow Groups and Applications
We study additive higher Chow groups with several modulus conditions. Apart from exhibiting the validity of all known results for the additive Chow groups with these modulus conditions, we prove the moving lemma for them: for a smooth projective variety X and a finite collection W of its locally closed algebraic subsets, every additive higher Chow cycle is congruent to an admissible cycle inter...
متن کامل00 7 Additive Higher Chow Groups of Schemes
We show how to make the additive Chow groups of Bloch-Esnault, Rülling and Park into a graded module for Bloch's higher Chow groups, in the case of a smooth projective variety over a field. This yields a a projective bundle formula as well as a blow-up formula for the additive Chow groups of a smooth projective variety. In case the base-field admits resolution of singularieties, these propertie...
متن کاملRegulators on Additive Higher Chow Groups
As an attempt to understand motives over k[x]/(xm), we define the cubical additive higher Chow groups with modulus for all dimensions extending the works of S. Bloch, H. Esnault and K. Rülling on 0-dimensional cycles. We give an explicit construction of regulator maps on the groups of 1-cycles with an aid of the residue theory of A. Parshin and V. Lomadze.
متن کاملA Hochschild-cyclic Approach to Additive Higher Chow Cycles
Over a field of characteristic zero, we introduce two motivic operations on additive higher Chow cycles: analogues of the Connes boundary B operator and the shuffle product on Hochschild complexes. The former allows us to apply the formalism of mixed complexes to additive Chow complexes building a bridge between additive higher Chow theory and additive K-theory. The latter induces a wedge produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006